NAG C Library Function Document

nag_triplets_test (g08ecc)

1 Purpose

nag_triplets_test (g08ecc) performs the triplets test on a sequence of observations from the interval [0,1].

2 Specification

```
#include <nag.h>
#include <nagg08.h>
```

3 Description

nag_triplets_test (g08ecc) computes the statistics for performing a triplets test which may be used to investigate deviations from randomness in a sequence of [0, 1] observations.

An *m* by *m* matrix, *C*, of counts is formed as follows. The element c_{jkl} of *C* is the number of triplets ($\mathbf{x}(i)$, $\mathbf{x}(i+1)$, $\mathbf{x}(i+2)$), for i = 1, 4, 7, ..., n-2, such that

$$\frac{j-1}{m} \le X(i) < \frac{j}{m}$$
$$\frac{k-1}{m} \le X(i+1) < \frac{k}{m}$$
$$\frac{l-1}{m} \le X(i+2) < \frac{l}{m}.$$

Note that all triplets formed are non-overlapping and are thus independent under the assumption of randomness.

Under the assumption that the sequence is random, the expected number of triplets for each class (i.e., each element of the count matrix) is the same, that is the triplets should be uniformly distributed over the unit cube $[0,1]^3$. Thus the expected number of triplets for each class is just the total number of triplets, $\sum_{i,k,l=1}^{m} c_{ikl}$, divided by the number of classes, m^3 .

The χ^2 test statistic used to test the hypothesis of randomness is defined as:

$$X^{2} = \sum_{j,k,l=1}^{m} \frac{(c_{jkl} - e)^{2}}{e}$$

where $e = \sum_{j,k,l=1}^{m} c_{jkl}/m^3$ = expected number of triplets in each class.

The use of the χ^2 distribution as an approximation to the exact distribution of the test statistic, X^2 , improves as the length of the sequence relative to *m* increases, hence the expected value, *e*, increases.

4 References

Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press Knuth D E (1981) The Art of Computer Programming (Volume 2) (2nd Edition) Addison–Wesley Morgan B J T (1984) Elements of Simulation Chapman and Hall Ripley B D (1987) Stochastic Simulation Wiley

5	Arguments	
1:	n – Integer	Input
	On entry: n, the number of observations.	
	Constraint: $\mathbf{n} \geq 3$.	
2:	$\mathbf{x}[\mathbf{n}]$ – const double	Input
	On entry: the sequence of observations.	
	<i>Constraint</i> : $0.0 \le \mathbf{x}[i-1] \le 1.0$, for $i = 1, 2,, n$.	
3:	max_count – Integer	Input
	On entry: the size of the count matrix to be formed, m.	
	Constraint: $\max_count \ge 2$.	
4:	chi – double *	Output
	On exit: contains the χ^2 test statistic, X^2 , for testing the null hypothesis of random	ness.
5:	df – double *	Output
	On exit: contains the degrees of freedom for the χ^2 statistic.	
6:	prob – double *	Output
	<i>exit</i> : contains the upper tail probability associated with the χ^2 test statistic, i.e., the significance el.	
7:	fail – NagError *	Input/Output

The NAG error parameter, see the Essential Introduction.

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_G08EC_CELL

The expected value for the counts in each element of the count matrix is less than or equal to 5.0. This implies that the χ^2 distribution may not be a very good approximation to the test statistic.

NE_G08EC_TRIPLETS

No triplets were found because less than 3 observations were provided in total.

NE_INT_ARG_LE

On entry, **max_count** must not be less than or equal to 1: **max_count** = $\langle value \rangle$.

NE_INT_ARG_LT

On entry, **n** must not be less than 3: $\mathbf{n} = \langle value \rangle$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

NE_REAL_ARRAY_CONS

```
On entry, \mathbf{x}[\langle value \rangle] = \langle value \rangle
Constraint: 0 < \mathbf{x}[i] < 1.0, for i = 0, 1, ..., n - 1.
```

7 Accuracy

The computations are believed to be stable. The computations of **prob** given the values of **chi** and **df** will obtain a relative accuracy of five significant figures for most cases.

8 **Further Comments**

The time taken by nag_triplets_test (g08ecc) increases with the number of observations, n.

9 Example

The following program performs the pairs test on 10000 pseudo-random numbers from a uniform distribution U(0,1) generated by nag_random_continuous_uniform (g05cac). nag_triplets_test (g08ecc) is called with **max_count** set to 5.

9.1 Program Text

```
/* nag_triplets_test (g08ecc) Example Program.
* Copyright 2000 Numerical Algorithms Group.
* Mark 6, 2000.
 * Mark 8 revised, 2004
*
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#include <nagg08.h>
int main (void)
{
 Integer exit_status=0, igen = 0, iseed[] = {0, 0, 0, 0}, max_count, n;
 NagError fail;
 double chi, df, enda, endb, p, *x=0;
 INIT_FAIL(fail);
 Vprintf("nag_triplets_test (g08ecc) Example Program Results\n");
  /* nag_rngs_init_repeatable (g05kbc).
   * Initialize seeds of a given generator for random number
   \star generating functions (that pass seeds explicitly) to give
   * a repeatable sequence
   */
 nag_rngs_init_repeatable(&igen, iseed);
 n = 10000;
 if (!(x = NAG_ALLOC(n, double)))
      Vprintf("Allocation failure\n");
      exit_status = -1;
      goto END;
    }
 enda = 0.0;
 endb = 1.0;
  /* nag_rngs_uniform (g05lgc).
   * Generates a vector of random numbers from a uniform
   * distribution, seeds and generator number passed
   * explicitly
```

```
*/
 nag_rngs_uniform(enda, endb, n, x, igen, iseed, NAGERR_DEFAULT);
 max\_count = 5;
 /* nag_triplets_test (g08ecc).
  * Performs the triplets test for randomness
  */
 nag_triplets_test(n, x, max_count, &chi, &df, &p, &fail);
 if (fail.code != NE_NOERROR && fail.code != NE_GO8EC_CELL)
   {
     Vprintf("Error from nag_triplets_test (g08ecc).\n%s\n", fail.message);
     exit_status = 1;
     goto END;
   }
 Vprintf("\n");
                                          = ", chi);
= ", df);
= ", p);
Vprintf('\%s%10.4f\n", "chisq
Vprintf("%s%8.2f\n", "df
Vprintf("%s%10.4f\n", "prob
 if (fail.code == NE_GO8EC_CELL)
   Vprintf("Error from nag_triplets_test (g08ecc).\n%s\n", fail.message);
END:
 if (x) NAG_FREE(x);
 return exit_status;
```

9.2 Program Data

None.

}

9.3 Program Results

nag_triplets_test (g08ecc) Example Program Results

chisq	=	135.0093
df	=	124.00
prob	=	0.2353